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Abstract

We examine the mapping of magnetospheric and ionospheric electric fields

in a kinetic model of magnetospheric-ionospheric electrodynamic coupling

proposed for the aurora by Chiu and Cornwall (1980). A new feature is the

generalization of the kinetic current-po tent is1 relationship to the return-

current region (identified as a region where the parallel potential drop from

magnetosphere to ionosphere is positive); such a return current always exists

unless the ionosphere is electrically charged to grossly unphysical values.

We are able for the first time to give a coherent phenomenological picture of

both the low-energy return current and the high-energy precipitation of an

inverted-V.	 The mapping between magnetospheric_ and ionospheric electric

fields is phrased in terms of a Green's function which acts as a filter,

emphasizing magnetospheric latitudinal spatial scales of order (when mapped to

the ionosphere) 50-150 km. This same length, when multiplied by Perpendicular

electric fields just above the ionosphere, sets the scale for parallel

potential drops between the ionosphere and equatorial magnetosphere.
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I.	 INTRODUCTION

As the result of particle and field observations in the aurora by rocket

and satellite-borne instruments, it is by now fairly well-esrablishel that the

auroral particles are accelerated by steady (relative to particle transit

time) electric potential differences of - 1-10 kilovolts between the magneto-

sphere and ionosphere, aligned along the magnetic field [Evans, 1974; Croley

et al., 1978; Mizera and Fennell, 1977; Shelley et al., 1976; Mozer et al.,

1977]. These observations confirmed and refined earlier indications of pos-

sible particle acceleration in the aurora [Frank and Ackerson, 1971; Gurnett

and Frank, 1973]. Consequently, recent theoretical efforts have been focused

on the formation of the auroral electric acceleration potential by various

kinetic mechanisms [e.g., Swift, 1975; Kan, 1975; Hudson and Mozer, 1978;

Levaaire and Scherer, 1974; Chiu and Schulz, 1978; Stern, 19811 which are to be

contrasted with auroral models based on MUD considerations [e.g., Sato, 1978;

Miura and Sato, 1980; Goertz and Boswell, 19791. Each of these two categories

of auroral models tenle to ignore what is most important in the other category

and is correspondingly incomplete [Chic et al., 1980, 1981]. In particular,

most of the kinetic auroral models omit ionospheric and/or cross-field charge-

separation effects, which amounts to decoupling neighboring magnetic field

lines thus yielding no definite connection between parallel and perpendicular

electric fields.

Recently Chiu and Cornwall [1980] initiated a program to remedy these

defects, generalizing the kinetic models to acr.ount for ionospheric current

conservation and charge conservation in the magnetosphere. These authors

wrote down a simple differential equation in L relating she ionospheric poten-

tial to the L-dependence of the parallel potential drop between ionosphere and

magnetosphere, which, in effect, specifies the mapping of magnetospheric and
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ionospheric electric fields along magnetic field lines in the presence of

parallel electric potential drops. This equation followed from the nearly

linear relation between the current of precipitated auroral electrons at the

ionosphere and the magnetosphere-ionosphere potential drop [Chiu and Cornwall,

1980; Fridman and Lemaire, 19801 predicted by kinetic theory when the mirror

ratio is large. Lyons [1980, 19811 has also studied this differential equa-

tion in some detail, motivated in part by observations [Lyons et al., 19791

which confirm the linear current-potential relationship, in connection with

the convection reversal boundary.	 (Chiu et al. [19801 have also noted the

connection between aurora'_ parallel potential drop and the convection reversal

boundary).	 More recently, Kan and Lee [19801 have studied the problem of

momentum transfer from ionosphere to magnetosphere with similar ideas.

In this paper we •eport on numerical and analytic investigation of elec-

trostatic field mapping in the presence of parallel potential drops between

the magnetosphere and ionosphere. In particular, we are able to consider the

effects of boundary conditions such that the ionosphere is not grossly charged

up. In effect, this is the condition that there is no net Pedersen current in

or out of the auroral zone (assumed to circle the earth). Under these condi-

tions, there is always a return current region. Moreover, the parallel poten-

tial drop in the return current region is typically < (10-25) % of the central

potential drop, so the return current is carried by relatively low-energy

electrons, say tens to a few hundred eV.

We show that the general solution of our model admits potential struc-

tures which can generate both S-shape (perpendicular electric field enhance-

ment without field reversal) and V-shape (with field reversal) "shock" struc-

tures [Temerin et al., 19811, depending primarily upon the boundary conditions

assumed.	 Indeed, we show that the V-shaped potential structure does not
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differ materially from the S-shaped structure except that imposed boundary

conditions are such chat in the V-shape the magnetospheric and ionospheric

potential extrema are forced to lie on the same magnetic field line. This

view of the relationship between the two classes of potential structures lends

itself to the interpretation that one should reasonably Eee higher probability

of occurrence for S-shapes than V-shapes. A systematic classification of

model solutions and their implications on auroral return currents are given in

Sections IV and V.

An important eonsequenre of :•lia Green ' s function formulation as iono-

spheric potential response to an imposed magnetospheric potential is that it

can be directly used to map electrostatic potentials from the equator to the

ionosphere by relating perpendicular electric fields to those associated with

a kinetic-model magnetic field-aligned pontential drop and current. 	 The

mapping of electric fields in the magnetosphere [e.g., Mozer, 19701 and in the

ionosphere-atmosphere [e.g., Chiu, 1974 1 is a very important problem for

auroral electrodynamic observations and interpretations [e.g., Mozer, 19711.

The magnetospheric-ionospheric mapping problem for the latitudinal component

of E 1 is illustrated in Figure 1. Before the advent of parallel potential

drops, it was assumed that magnetic field lines were electric equipotentials

(because of assumed infinite parallel conductivity); hence, electric field

mapping between the magnetosphere and ionosphere was strictly geometrical

depending on the distance between neighboring field lines. In other words,

the stales of ionospheric electric fields were related to that of the magneto-

spheric fields strictly by the geometric convergence of the magnetic field, as

required by V4 a 0; i.e., the line integral of ^ along the magnetosphere-

ionosphere circuit reduces to Am l M 
A#M 

in Fig. 1.	 However, if a field-

aligned potential drop such as A# 
IM 

in Fig. 1 exists, the line integral
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of ^ over the magnetosphere-ionosphere circuit not only involves 
AfIM 

but

also the perpendicular scale of the field-aligned currents J  since the

mapping depends on where the field lines L 1 and L2 are located in relation to

the upward and downward field-aligned currents. Roughly speaking, the scale

Of parallel potential drops in the auroral region is found by multiplying

perpendicular equatorial magnetospheric electric fields by the usual geometric

mapping factor ( a L3/2 ) and by the scale length (50-100 km) of inverted-V

precipitation regions. In a later work we will take up the problem of large-

scale mapping in quantitative detail.
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II. CllAitGE AND CURRENT CONSERVATION IN A KI14ETIC MODEL

In this section we give a brief summary of a kinetic model formulation of

magnetosphere-ionosphere coupling leading to auroral acceleration [Chin and

Cornwall, 198U]. The basic premise is that auroral particle distributions are

in quasi-static collisionless equilibrium (for time scales long compared to

ion transit time) with the electric and magnetic fields. It has been pointed

out by many authors [see review by Stern, 1981] that differential pitch-angle

anisotropy between electrons and ions in a dipolar flux tube would lead to a

magnetic field-aligned electric potential drop of several kilovolts even in a

one-dimensional model in which the effects of the perpendicular electric field

are ignored. Such one-dimensional models produce features of particle distri-

bution functions in velocity space in agreement with S3-3 particle observa-

tions (Chiu and Schulz, 1978). In addition, such one dimensional models

predict that the magnetic field-aligned current density J  should be approxi-

mately proportional to the magnetic field-aligned potential difference: between

the ionosphere and the magnetosphere [Fridman and Lemaire, 1980; Chiu and

Cornwall, 198U]. This relationship is in agreement with rocket observations

[Lvons et al., 1979].

Chiu and Cornwall (1980] generalized such kinetic models to two-

dimensions to include the influences of the perpendicular electric field by

invoking kinetir charge conservation in the auroral region (Poisson's equa-

tion) and current conservation in a schematic sheet-like ionosphere with

lie ight-integrated Pedersen conductivity Ep . Thus, for ionospheric potential

0, the height-integrated current conservation equation states that

V l . ( E p VIm) - -1 1 ,	 (1)
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where J  is defined to be negative for downgoing electrons. Now the kinetic

models ( or rocket observations) imply, aside from a term to be identified with

diffuse auroral precipitation, that J  is proportional to the magnetic field-

aligned difference between m and the electric potential at the magnetospheric

equator m09

-Ji a 	 (f-m0 )	 (2)

where Q > 0 depends on particle densities and velocities. Equation (2) has

been written down by several authors for a bi-Maxwellian distribution [Chiu

and Cor .1wa11, 1980; Fridman and Lemaire, 1980]. This remarkable linear rela-

tion between J  and f - f0 holds because of the smallness of the mirror

ratio B0/B R. In the Appendix we give the generalization of (2) to an arbi-

trary distribution function, which shows that the parameter ^ is of order

Net /Mv, where v is a velocity typical of the given distribution function.

Within the approximation made in the present paper, the properties of magneto-

spheric particles appear directly only in the parameter Q; auroral features

are otherwise determined by magnetospheric perpendicular electric_ fields and

by the ionospheric Pedersen conductivity ( these latter quantities, of course,

may be in part Determined by the particle parameters).

Combining ( 1) and (2) one obtains an equation specifying the ionospheric

electric-potential response m to a given magnetospheric dynamo potential m0:

Vl . ( E 
p 
V  0) - Q (0 - 00 )	 (3)

Lyons ( 1980) has studied this equation, choosing ®0 to represent "discontinu-

ities in the magnetospheric convection electric field ^ with V4 \ 0." Lyons'
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solutions show no return current region, and are based on a boundary condition

of constant g at infinity, both at the ionosphere and at the magnetospherir_

equator. In this paper we classify and interpret solutions of ^3) using the

Green's function technique, and imposing the condition that the ionosphere

does not become electrically charged to grossly unphysical values; our solu-

tions are thus different from Lyons'.

Of course, e quation (3) by itself tells us nothing about what happens

between the equatorial magnetosphere and the top of the ionosphere. The

physics of this region is largely governed by Poisson ' s equation and the

relation between net charge density, electrostatic potential, and magnetic

mirroring forces. In the presence of an inhomogeneous magnetic field,

Poisson's equation reads [Chiu and Cornwall, 19801:

Vl	(dl) t Bas (B-1 E M )	 One (Ni - Ne )	 (4)

where N, . 9 Ni are complicated functions of B and 1, and K >> 1 is the plasma

dielectric constant, which depends on N i , Ne , B and m. We will not use (4)

directly in the present work; for us the important consequence of (4) is that

field lines are coupled, in the magnetosphere, over lengths scaled by the

Larmor radius. On substantially larger length scales, such as concern us in

this paper, field-line coupling is dominated by equation (3).

Below the top of the ionosphere (say, 	 2000 km), the physics of the

ele^tric field involves ionization and recombination processes, as well as

rollisional conductivities in the E-region (where most of the ionospheric

current associated with auroras is flowing). We have not considered the

physics of this region in any detail, mostly L?r_ause it is very complicated.

To achieve the phenomenological approach used here, we need only note that

9
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ionospheric return currents are generated in the collisional E-region, and

that Poisson ' s equation allows us to relate E  in this region to that in the

magnetosphere.	 In the usual way, we express an ignorance of the detailed

processes going on between the E-region and 2000 km by integrating over this

range of altitude, ,a in (1) and (3). In this paper where there is no need to

distinguish the E-region from the rest of the ionospher e, we adopt the conve-

nient ( but inprecise) terminology of referring to quantities with sub-

script R as ionospheric. When there is need for a precise distinction, we use

the subscript I to denote the E -region ionospere and R for 4"Antities evaiu-

aced at 2000 km (the baropause).

In using equations (3) and (4) we assume all quantities depend only on

the coordinate x, the horizontal. distance in the north -south direction at the

haropause (s-A, where s is the distance along the field line from the

equator). Of course, the ma3netospheric potential # 0 is originally given as a

function of latitudinal distance at the equator xE ; they are related by x - xE

(B0 /B I ) 1/2 , and ^0	m0 [x(B t / g0 ) 1/2 ).	 This means that when we speak of

a►agnetospheric perpendicular electric fields, these fields are scaled

geometrically to the ionosphere as if there were no parallel potential drop.

Originally equation (3) was derived for the case when the ionospheric

potential ^(x) was greater than the magnetospheric potential ® 0 (x) on a given

field line, for only then could the relation -J, = m-m0 be derived. (J 1 < 0

corresponds to downgoing electrons.) The reason is that the derivation of

this relation depends on the smallness of the inverse mirror ratio (B0/Bt);

this ratio enters because the distribution function of the p-ecipitating

electrons is originally specified at the equator, but evaluated at the iono-

sphere. A similar argument is not directly applicable to the return current,

which has its source in the ionosphere. but other arguments, given below,
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allow us to conclude that -J A is still linear in 4-40 , even when this poten-

tial drop is reversed in sign, although the (positive) :actors of proportiona-

lity are not nececaarily the same for upgoing and downgoing J^. We thus

generalize the current-potential relation to

-J 1 - Q(x) [4(x) - 40 (x))	 (5)

throughout the whole auroral region and for both signs of current; Q > 0 may

depend on x both implicitly and explicitly, e.g., Q may assume different

values for 4 - 40 > 0 and for 4 - 40 < 0.

It is actually a question of some delicacy whether, in (5), 4 - 40 means

41 - 40 
or 

41 - 4
0. In contrast, this is not at issue for the same relation

(2) used in the precipitation region, because 40 - 41 is much larger. than

41 - 4
1 , that ie, 40 - 41 s 40 - 4 1 for the upward current region of electron

precipitation. This is not so for the return current region, and exactly what

we mean by 4 - 40 in (5) affects the value of Q. Since we do not know very

well what Q is in the return current region we leave this question open in our

parametric studies of (5).

The return current, frequently observed to lie adjacent to the upward

current of auroras [e.g.. Kamide et al., 1979), is formed by convers!rn of

directly-precipitating electrons, and their secondaries, into horizontal

Pedersen current at altitudes < 170 km (above 200 km, the Federsen conductivi-

ty drops rapidly). These Pedersen currents carry a net negative charge tc, the

edges of the precipitation region, which thus acquires a Potential suitable

{
for expelling ionospheric electrons upward along the magnetic _ field. (There

are not enough magnetospheric ions to support the alternate scenario of ion

precipitation [Lui et al., 1977).) The actual charge imbalance is very small,



only a tiny fraction of the charge carried in by precipitation. For example,

a downward electron flux F, if not removed from the ionosphere promptly by

return currents, produces a surface charge density at the ionosphere. The

associated electric field produced by F over a time t is given by E I a 4weFt.

If F m 109e/cm2 sec, t - 1 sec, we find E r ol 200 kV/m!	 Since iri fact E  is

considerably less than 1 mV/m at the ionosphere, the net charge density of the

ionosphere is less than 5 e /cm2 . Although this is a tiny charge imbalance, it

is direerly responsible for the return current flow. In our calculations we

need not deal directly with the net charge density; it is clearly adequate to

insist on current conservation, co that all the charge that flows into the

ionosphere flows out again. Note that this condition is violated in Lyons'

(1980 0 1981) calculations.

Now we must relate the return current density to the electrir7 field

produced by the charge imbalance of the ionosphere. Since the return current

is created in the collisional E-region, the relation between current and field

is the usual one:	 J I a o f E I . Actually, this should be integrated over the

various altitudes at which conversion of Pedersen current to field-aligned

current takes place; we do not know the details of this process, so instead we

employ height-integrated quantities:

. _Ie2
J r 	 m v lh (0 I - 

+ i )

Here 
V  

is an effective height-averaged collision frequency, and h is the

altitude difference between the collisional ionosphere and the regime where

collisions are ineffective_ (roughly the t;;+- -)pause). Above the baropause, J
1

is given by a geometric scaling law expressing the opening-up of flux tubes:

4

(6)
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s < t: J R (s) - JIM B t s	 (7)

Furthermore, for s < 4, E I (a) is given by the same scaling as in (7). To see

this, return to Poisson's equation (4), averaged over a horizontal dia-

tance Ax larger than the ion Larmor radius (a few KS), but small compared to

the size of the return current region (50-)00 km). The first term on the left

of (4) is small after averaging, and we drop it. The charge density (right-

hand side of (4)) is likewise small, since magnetic: mirror forces du not act

to separate the low-energy electrons and ions. One then concludes that

s < t: E^(s) - E,(t) B(S) I 
h
	 B(s)	a(g)

T,	 t

in the return current region. Of course, (6) - (8) together tell us that J 

- (I t - / t ) everywhere along the line, while (8) can be integrated over s

from 0 to t to give (10 - It ) ae varying linearly with II - 1 j.• :hen (5), the

proportionality of current to 1 - 1 09 Le established for the return current

region. As we have said, the constant of proportionality depends on whether

by 4 we mean ®I or It.

In summary, the "mapping" of a given magnerospheric potential distribu-

tion #O (x) to the ionospheric E-region (where the potential distribution

is 1(x)) in the presence of field-aligned! potential drop distribution 1(x) -

1O(x) is governed by

ax F(x)
11

 
 
- K2(x) (/(x) -	 (x))	 (9)

Where F is the dimensionless profile of the height- integrated ionospheric

Pedersen conductivity Z P (x) = to F(x) such that F(*-) -l. The function K(x)

13



[Q(x)/EO)1/2 > 0 is an inverse

ionosphere coupling. From (9), it

filter as the distribution 00 (x) i

under various physical restraints,

dealt with in this paper.

scale length set by the magnetosphere-

is clear that this natural scale acts as a

s "mapped" into 0(x). The solution of (9)

such as (4), will be the main topic to be

We have already said that the ionosphere is slightly charged, but by an

extremely tiny amount (the precipitated charge is relieved by the return

current). Equally negligible is the net charge of the magnetosphere-

ionosphere system, integrated for x - - w to W. It thus follows from

Poisson's equation (4), integrated over all x with neglect of the right-hand

side, that

El(-) - E I(-M) - 0 - 0' (—as) - f' (00)	 (10)

By integrating (4) from	 to -, we learn that

mf dx 42 (x) [0(x) - 00 (x)) - 0 ' (m) - 0'(-0°) - 0	 (11)

This shows immediately that 0(x) - 0 0(x) must change sign; the crossover point

X., where 0(xc ) - 00(xc ), is the bounda ry between the region of direct elec-

tron precipitation and the return current.
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111. GENERAL FEATURES OF ELECTRIC FIELD MAPPING

As has been alluded to previously, a major purpose of this paper is to

analyze the dependence of the ionospheric electric potential response upon the

Uposed magnetospheric dynamo potential distribution and upon the boundary and

charge constraint conditions assumed. For purposes of establishing the con-

sistency of boundary values for the general scheme formulated by Chiu and

Cornwall 1191301, it is convenient to consider the case of constant (but dis-

continuous) parameters F and K in (9).	 On the practical side, since the

entire problem with constant parameters can be solved analytically, the re-

sults of this section provide the basis for analysis without the encumbrances

of a computational effort. We sha l l show in the next section that our con-

clusions are not basically altered when F and K are made functions of x.

For constant parameters (F - 1, K - constant) in (9), the general solu-

tion can be written as

OW - Ce
-Kx + De+Kx + L f x dy P0 ( y ) a

-
'((X y) + 2 J

x dy 00(y)eK(x y) (13)

where the determination of constants (C. D) and the integration limits depend

on boundary conditions.	 Note that (13) is written in terms of the general

one-dimensional Green's function solution for given source function 0 0 ; hence,

the internrotation that 0 is the ionospheric response to o u t	 Because K -

[Q/E
U 
11/2 can be different constants in the upward and downward current

regions, the complete solution for 0 with a given set of values of K, must be

wade continuous at the boundary of the two regions; indeed, this procedure can

be applied for any number of regions of different K values.

t
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As an example, let us consider the explicit solution specified by the

following conditions:

a. The ionospheric potential m(x) and the dynamo potential ^0 (x) are

symmetric about the origin; thus O(x) - #(-x), so we need only consider the

domain 0 < x < m.

b. The domain 0 < x < « is split into two regions defined by different

constant values of F and K. Because these parameters are assumed constant, we

can set F - 1 and ( 9) is specified by a single parameter x i (i - 1, 2) in each

region. The boundary between the two regions is labeled x - xc . Thus, (9)

becomes

o1,2 - K1,2 
( 0 1,2 - 00 )	 (14)

with 0 < x < xc labeled as region 1 and x c < x < . labeled as region 2.

C. The total integrated charge of the ionosphere is assumed zero. The

symmetry assumption a above implies that total charge in 0 < x < m also

vanishes, as expressed in (10). Adopting the notation of that equation, we

have

fy (•) - fi(0) - 0
	

(15)

Now because of the symmetry assumption, f 1 (0) must be an extremum,

i.e., mi (0) - 0. Therefore, the effects of assumptions a, b and c correspond

to the boundary conditions

X1(0) - #2(°) - 0	 (16)
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d.	 At the interface x - xc , we require the continuity of ^ and itR

derivative ( a discontinuity in m' would imply a surface charge layer at xc):

^ 1 ( xc ) - ^ 2 ( xc )	 (17)

fi(x,) - f2(x c )	 (18)

Up to this point, we have treated the interfacial point x - xc as if

given; but, by virtue of its definition as the interface between regions of

upward and downward current, we have by application of (5) at xc

f0 ( xc ) - f 1 ( Xc ) - ^2 ( Xc )
	

(19)

where the second equality of (19) is redundant with ( 17). In addition to the

four boundary conditions ( 16) - (18), which determine the set of four coeffi-

cients, (C 1 , C 2 , D 1 , D2 ) in terms of xc , ( 19) is a transcendental equation for

xc . To render the procedure more explicit, we write the regional solutions to

(14)

-KIX	 K 
I 
X K1 X	 K1(Y-X) K 1	 x	 _KI (Y-X)

0 1 W -Cle	 D I e	 + 2 1 dy ^O (y)e	 - 2 1 dy 00 (y)e	 (20)

	

0	 U

-K2X K2
m `(X) C 2e	 +[

X	 K2(y-X) K2
j dY ^0(y)e	 + 2
Xc

°°	 -K2( y-X)
f dy m0(y)e	 (21)
X

from which ( 16) - (19) can be applied to determine the unknown constants in

terms of the parameters K 1 and K 2 . The procedure is straightforward for an

assumed ®0(x).

As an example, we show in Fig. 1 a solution 0 for a given m0 of the form
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#0(x) - A [e-ax _ (a/b) a-bx)	 (22)

where a- '  - 76.5 km, b-1  - 73.5 km and A is a normalization so chosen that

00(0)- A(1-a/b) < 0 is equivalent to ten divisions of the ordinate of Fig.

2. The scale length of 00 is (because a is nearly equal to b) about 160 km;

whereas the natural scale lengths 
Kit 

and 
K21 

are respectively 75 km and 53

km. From Fig. 2, the distance xc to the cross-over point is about 160 km,

while the return current extends for some distance past that.

It is clear from ( 20) and (21) that the scale length associated with the

ionospheric potential ^(x) depends on the Ki as well as on the scale associ-

ated with t0 . This correlation of scales is analogous to electric field

mapping in the collisional ionosphere (Chiu, 1974), where finite but different

parallel and perpendicular conductivities play the same roles as our field-

aligned and Pedersen currents. As in the case of ionospheric electric field

mapping, 4 t would be convenient to have a "rule of thumb" for the convolution

of scales of the potential drop. For this prupose, we consider the case of a

dynamo potential of scale Y - I.

to (x) - Ae
-Yx	

(23)

in the simplest situation in which K  . K 2 a K. This 
+0 

has a discontinuity

in E1U (x) at x - 0, which makes it somewhat artificial.

An easy calculation yields the cross -over distance xc:

xc _ (Y-K)-I in (Y/
K )	 (24a)
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If, instead of taking K I r K2 a K, we take KI M K, K2 a - (which forces ^(x)

^0(x)for x > xc ), xc is increased by a factor of two over the value given by

(24a). The opposite extreme of K 2 a 0 yields scale lengths in the range 1.4-2

times x  in (24a), depending on Y IK. That is to say xc varies by at most a

factor of two when K 2 is varied.

An important scale length is that of the potential difference ^ - m01

since it is a measurable quantity.	 From ( 13) and (23) we find this scale

length to be

_	 2	 0
xd l = - dx Rn(m-^0 ) - K - Y + 

K	
0	

(24b)
0

Note that as Y + 0 the cross-over distance xc approaches infinity, while

x  + K 1 ; this is the case considered by Lyons ( 1980). ( In later work, Lyons

(1981) has considered finite Y.) In our simple example xc is independent of

potentials,	 but x  depends	 on	 them.	 We	 estimate at x-0	 that

00(f-f0) -
1 lies between 1 and 3 for typical cases, so (24) shows that x  is

governed by Y-1 in the limit of large Y, but tends to K -1 for small Y. That

is, wall-scale magnetospheric structure can be transmitted down to the

ionosphere with little change, but if the magnetospheric scale length (of

course, mapped geomatrically onto the ionosphere) is large compared

to K 	 the scale length of the inverted-V region tends to K-1 .	 It is

important that small-scale magnetospheric structures are not filtered out,

since they ma.% well be responsible for small-scale ( in Lamor radius) effects

observed in the auroral ionosphere [e.g., Swift, 1979; Lysak and Carlson,

1981).

Now we come to one of the most important features of equation ( 14) and

its associated boundary conditions: The central potential drop A# = 0(0)-
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p 0(0) is not an undetermined parameter; instead it is set by the scale

length K and by the magnetospheric E 10 (x), geometrically mapped onto the

ionosphere. This means that the large-scale convection field mapping problem

can be solved with relatively minor modifications to the solution for zero

parallel potential drop.	 It is not our purpose to discuss this large-scale

mapping in detail here, so we simplify to the cease of constant K to make our

point. It is then an easy matter to integrate (20) by parts and find;

Am = 0(0) -- 0 0 (0) _ - 1	 dx a-Kx E10(x)	 (25)
0

(Of course, appropriate values for C and D are used, which satisfy the bounda-

ry conditions of symmetry around x - 0 and vanishing fields at x - -. ) One

may estimate 60 from (25) by assuming, e.g., -E 10(x) - 100 mV/m and K-1 = 50

km which gives Am a 5 kV; this nominal value will decrease if E10 decreases

with x (as, for example, in (23)).

We see that A^ is determined in part by properties of magnetospheric_

particles through K (see the discussion below equation (2)), in part by iono-

spheric current conservation which couples neighboring field lines together,

and in part by perpendicular magnetospheric electric fields. If any of these

ingredients is left out, it is not possible to determine the central potential

drop A^. Conversely, we ran also say that A f * 0 is the resuit of all these

ingredients put together.
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IV. SPECIFIC KXAMPLKa of ELECTRIC FIELD MAPPING

As we have indicated in the previous section, otir model suggests that the

magnitudes of the height-integrated Pedersen conductivity, E p , and the paral-

lel current density, J,, directly affect the length scale associated with the

mapped electrostatic potential in the ionosphere. In this section we investi-

gate more closely the sensitivity of this mapping to latitudinal variations of

these parameters prrpen.dicular to the magnetic field.

In the absence of conclusive observational descriptions of the spatial

variation of E p , and J r ; we have considered three kinds of variability whi^h

should brackot the physical characteristics we wish to model. Solutions to

(9) are discussed for t:iree different assumptions; 1) F and K are spatially

constant; 2) F and K assume constant values but K experiences a discontinuous

,jump between regions of upgoing and downgoing current; 3) K is constant, but

F decreases expotiotially as one goes from the precipitation region to the

return-current region (that is, 
Z  

is enhanced in the precipitation region).

of course, case 1) was discussed extensively in the last section.

Case 2) was also discussed briefly, in the special example of an expoaen-

tial ^C . A somewhat more realistic ^C is that used for Fig. 2, and given in

(22); it has no discontinuity in E 10(x) at x-0. Fig. 3 shows the results of

numerical integration of (14) for different K I /K2 , with K 	 at 75 km.

The most obvious result is a strong variation in the average returtr-rurrent

potential drop, as necessitated by current voliaervation (the return current

varies as K2 4 - ^ ), so a smaller 
K2 

requires a larger potential drop).

For K2 . 1CK 1 the return-current potential drop is 25 r.tn^^s smaller than the

central potential drop, and 5 times smaller for K2
.
 K 1 . Note from Fig. 3 that
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the central potential drop increases slightly as K 2 increases, and that xV

does not move very much.

So far, we have studiously avoided estimating the value of K2 (that is, Q

in the return-current region). This is because K2 
is not easy to estimate

reliably, since it depends on quantities which vary significantly with alti-

tude in :he ionosphere. But the reader is entitled to some feeling for the

ratio K2 /K 1 , so we offer the following estimate.	 From Chiu and Cornwall

(19801, we recall

IJ IR I - NM- e(2 + 2 )(elA^ I 1 /kT l_ MT l _/2nme )
1/2 	(2b)

From ( 6), we have

112 ^ NI- e2 IA^2 I /me h v l	(27)

In (26) and (27), superscripts 1 and 2 refer to upward and downward currents,

respectively. The ratio of currents is thus

(2+A /3) N	 m T	 1/2	 IAm1I

It 1 /11 2	
21 2 

(NM--)( e 12^ 	hvl  	 Z	 (28)(2A)	 I- k T 1_	 IAmil

Applying case W of Chiu and Schulz ( 19781 to ( 28), one has the magnetospheric

parameters: kT I _ = 0.189 keV, kT l_ = U.775 keV, NM_ n 3 cm 3 .	 For iono-

spheric parameters, the lumped quantity hv I /N I_ - 103 cm / sec for nighttime

conditions is used to obtain

1iI1/IJ2RI - 0.2 IAm I U lam2 1 	 (29)
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If taken seriously, this indicates that Q 1 /t1 2 2 ().2. to view of the fact that

E ! /E2 is likely to be greater than one ( because of precipitation enhance-

ment), it is likely that K2 /K1	 (^2/Q1)(£ 1/E2) is at least 10 and possibly

larger. This means ( see Fig. 3) that return-current electrons have energies

of 100 eV or less.

Turn now to case 3), where the precipitation enhancement of E  is modeled

by an exponential, varying from 10 mho at xn0 to 1 m'r) :tl l it„r x. We have

fixed Kl t - 
K21 s 80 km, and, as shown in Fig. 4 ; take the conductivity scalp

length to be either K 1 or U.5 K 1 (also shown for comparison is the case E  .

5 mho everywhere). The dynamo potenti al ^U t-; tho game as for Figs. 2 and 3

(,e, , ogitation (22)). The general features associated with the earlier figures

persist: The cross -over point xc does not change much, and the return -current

potential drop is significantly less than the - • entral potential drop. 	 The

more rapid the falloff of E p , the larger this ratio of potential drops

becomes.
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V.	 ELECTROSTATIC POTENTIAL TOPOLOGIES: S AND V SHAPES

So far, we have only considered potentials ^ and #0 which are symmetric

about x-0, with antisymmetric electric fields. This presumably is associated

with the classic inverted-V structure seen in auroral electron measurements

(Frank and Ackerson, 1971, 1972; Gurnett, 1972; hizera et al., 197b; Mizera

and Fennell, 1977).	 But it has been suggested that asymmetric potential

structures (called S-shapes) may happen even more frequently Cyan V-shapes.

V-shaped equipotential contours are always associated with F: 1 reversals, as

shown in Fig. 5. Whereas, the term "S-shape" refers to equipotential contours

which deviate from field lines, but do not show E  reversals. Fig. 5 makes it

clear that every V -shaped (or symmetric) potential has S-shaped equipotential

contours on its wings. A satellite crossing this symmetric potential

structure at any altitude can detect a V-shaped region.

But this is not the only possibility in principle. There can be asym-

metric potential structures which look V-shaped at sufficiently high alti-

tudes, but are only S-shaped at lower altitudes. An example is shown in Fig.

b, in which the region of negative x has equipotential field lines, with an

auroral structure for x > 0.	 We do not know why the situation of Fig. 6

should occur with any particular frequency, compared to the occurrence of more

or less symmetric potentials, but experimenters should keep in mind the possi-

bility that low-altitude electric field measurements might show a different

topology than seen on high-altitude satellites. It will be interesting to see

what the Dynamics Explorer satellites see in this regard.

24



MCLUSIONS

1. We have extended the differential equation used in an earlier work

(Chiu and Cornwall, 19801 to encompass the return-current region. This re-

quires knowledge of the proportionality factor between -.; I and m - ^0 , which

we can estimate only crudely at the moment. (That J  is proportional

to f - m0 is really rothinp but Ohm's law, which is applicable to the return

current because it is generated in the collisions] ionosphere.) These esti-

mates suggest that the return current, contiguous to and just outside the

region of auroral precipitation, is carried by electrons of 100 eV or less.

The crossover point between upward and downward current is 100-150 km fron

the center of the inverted-V, for wide variety of auroral parameters. An

essential ingredient of this extended equation is the boundary condition of no

net current flow in or out of the ionosphere, so that the ionosphere is not

charged to grossly unphysical values. 	 The ionosphere carries an extremely

small negative charge which is responsible for driving the return current.

2. Our differential equation couples neighboring field lines to each

other. As a result, it is not possible to assign parallel potential drops

more or less arbitrarily, as earlier workers who did not consider ionospheric

current conservations were forced to do. The total parallel potential drop

along the center field line of an aurora is uniquely determined by parpendicu-

lar magnetospheric electric fields, convolved with a Green's function which

has a scale length x -1 determined by both ionospheric parameters and by the

number and momentum of auroral primaries:	 K2 . Q/E p, Q a Ne 2 /Mv. This

unique determination of parallel potentials means that the problem of con-

structing ^ (both E l and E I ) everywhere in the magnetosphere, given E 1 on a

boundary surface can be solved straightforwardly (in principle, at least).
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3. The Green's function integrals which solve our differential equation

show that small-scale structures in E1O(x), the equatorial magnetospheric

field, are mapped onto the ionosphere. but large-scale structure is hidden,

and the overall ionospheric scale size of inverted-V auroras is K-1 • 100

km. :k> K-1 may be called the outer scale size of inverted V's. There is, of

course, much small-scale structure in auroral arcs, and many authors b0 ieve

that it is Napped down from small-scale structures created near the equator of

auroral field lines.

4. Different boundary conditions imposed on the differential equation

yield topologically-distinct solutions. Latitudinal symmetry about a center

line implies equipotential contours with a V shape at all altitudes

(sufficiently close to the center line). Asymmetric boundary conditions can

push the V-shaped region to a finite altitude, leaving only S-shaped

potentials below. The Dynamics Explorer satellites will, we hope, settle this

question of the nature of V-shapes and S-shapes.
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APPENDIX

In this Appendix we show that the kinetic Ohm's law ( 2) holds for

arbitrary electron distribution function.

Let c I 2 V2 and c l : vi0 be the constants of action for an electron

moving on a magnetic field line; these are related to the local veiocittes at

any point s on the line by

210
	 2	 2	 BO

v- v 1 + vl {1 - s^)

2 _ By

v10 B s

Me (1(s) - ^0 )	 (A-1)

vl	(A-2)

The equatorial distribution function (s-0, B-Bo, #-4 0) is f(c l , cl).

We are interested in the current at the ionosphere (s-1) produced by

electtona arriving there from the equator. The velocity-space integral which

defines J  is subject to the constraints

vl>0,v2>0
	

(A-3)

wh:rh translates to the constraints

- J
N I - 2v Jo'vl dv l Jow l dv I f -

e

B

(81 ) Joadel Jo^del f(c l , c l ) {8(R-c l ) +
0

+ 8(c,-R) Ole- (B 
1B B0

) (c l R))}	 (A-4)
0
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where 6 is the usual step function and

B

R - Me (B - B ) (OR - +0 ) 
> 0	 (A-5)

^	 0

Now BO /B I ( 1 so that if, as we assume, the average value of E  is not large

compared to (e/M) ( #I - #0 ) 9 we can replace e l by 0 in f for the

terms 9 (R-E l ) in (A-4). Likewise in the second 9-function in (A-4) we can

set R-0, so 0 < e l < (BO/B t ) E l - o. It is then straightforward to find

ff - 2 f0pde I f(e l ,OME I + Me 400 )l + O ( BO/Bi)	 (A-6)
e

The E r term in square brackets represents the diffuse auroral current ( leakage

into the loss cone), and will be neglected in this work. The second term

gives rise to equation (2), where comparison with (A-6) shows that Q - N2
e 
/ttv

where v is a typical velocity for f.
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Figure Captions

1. Electrostatic field mapping along field lines L 1 and L2 between the
a

magnetospheric equator (EM) and the ionosphere (E I ) with or without a

1	 magnetic field-aligned potential drop AOMI•

2. Latitudinal structure of the electrostatic potential associated with the

magnetospheric boundary, #0, and with the ionospheric boundary, ^. x c is

the position at which # - v0.

3. Latitudinal structure of ® and 
#0 

from (9) with K - K 1 for x < x  and K

K2 = 4 K1 for x > xc . Variations in m allow different values of J  in

regions of upgoing and downgoing current (F - 1).

4. Latitudinal structure of ^ and 
*0 

for an exponentially varying integrated

Pedersen conductivity, E p= 9.1e mKx + 0.9. ( K - K 1 is kept constant.)

5. Interpolated equipotential structure from the geometrically mapped mag-

netospheric boundary to the ionosphere. Arrows indicate the direction of

the electric field. Notations V and S indicate regions of V-shaped and

S-shaped potential structure.

6. Same as Fig. 5 for a different imposed magnetospheric potential struc-

ture.
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